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A B S T R A C T

By integrating atomistic simulations with theoretical calculations, we investigate the prevalence of {112}
deformation twins in bcc materials and their sensitivity to the loading direction as well as temperature. Our
atomistic simulations reveal the copious occurrence of {112} twins involving either hcp or fcc intermediate
phases. The hcp and fcc cases occur in bcc titanium alloy during [100] compression and tension, respectively.
Similarly, they can also manifest in bcc iron under different temperature conditions. Furthermore, by
calculating the correspondence matrix, we identify the fcc and hcp cases as the normal deformation twin mode
and the 1/2 atoms-shuffle mode, respectively. The twinning modes have a significant influence on twin–twin
interactions and the final microstructure. Our theoretical calculation confirms that the selection of specific
twin modes and twin variants is governed by the correlation between their deformation path and mechanical
loading. The results underscore the crucial role of mechanical loading and temperature in activating the specific
twin modes, thereby providing a novel avenue for engineering twin microstructures through carefully designed
thermomechanical processing techniques.
1. Introduction

Plastic deformation of body-centered cubic (bcc) metals at room
temperature and moderate strain rates is limited by the slip of screw
dislocations [1–6]. These dislocations have low mobility due to their
non-planar dislocation core and high lattice resistance, limiting the
ductility of bcc metals [2,7,8]. One effective approach to enhancing
ductility is by activating additional deformation mechanisms along-
side dislocation slip. For instance, in recently developed metastable
titanium (Ti) alloys, the high ductility is attributed to transformation-
induced and twinning-induced plasticity, the latter of which is achieved
through the {332} twin mode in addition to the conventional {112} twin
mode [9,10]. Recent studies have demonstrated twinning as an addi-
tional deformation mechanism in bcc metals through in-situ transmis-
sion electron microscopy investigations of nanoscale deformation [11–
13]. Notably, Wang et al. [14] conducted in-situ nanomechanical test-
ing and observed the superior plastic deformation in bcc niobium
(Nb) nanowires. The remarkable superplasticity is attributed to the
simultaneous activation of three distinct mechanisms—stress-induced
phase transformation, deformation twinning, and slip-induced crystal
rotation. In another study of bcc tungsten, most deformation twins
exhibited instability and underwent detwinning upon unloading [15],
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contrary to the notion that twinning represents a permanent plastic
deformation [16]. The instability of bcc twins was found to be pro-
portional to the fraction of inclined twin boundaries that deviate from
the {112} habit plane. These studies affirm the significant potential for
inducing deformation twinning in bcc materials. Though still in the
early stages, further research is required to gain a deeper understanding
of twinning mechanisms in bcc materials [11].

Some recent studies emphasized the correlation between twinning
and phase transformation, and proposed transformation-assisted twin-
ning mechanisms [11,17–26]. Notably, Li et al. [27] proposed three
types of phase transformation mediated twinning pathways, rooted in
the experimental observation of metastable interfacial phases (𝜔 or
orthorhombic) at the twin boundaries in bcc metals or alloys [27–32].
On the other hand, Gao et al. [20] conducted a theoretical investigation
into the relationship between symmetry breaking during phase trans-
formation and deformation twinning in bcc structures. They proposed
that along the deformation path of bcc twins there exist intermediate
high symmetry states, including face-centered cubic (fcc), hexagonal
close-packed (hcp), 𝜔, and orthorhombic states. Importantly, they pro-
posed that different twinning modes correspond to the topological
defects arising from the symmetry breaking in different intermediate
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high symmetry states. In another study by Yang et al. [33], molecular
dynamic (MD) simulations were employed to investigate the phase
transformations and twinning behavior in nanoscale iron (Fe) with
different carbon contents. Their findings demonstrated that when the
fcc structure was stretched along the [100] direction, it underwent the
fcc-bcc phase transformation, concurrently resulting in the formation
of {112} twins between neighboring bcc grains.

Unlike dislocation slip, twinning shear exclusively occurs in a uni-
irectional manner, and merely reversing the shear direction does
ot lead to the same twin relation. Therefore, the loading directions
ave the potential to impact twin formation in various crystal struc-
ures [34]. In hcp materials, it is well-known that deformation twinning
xhibits a tension–compression asymmetry. When the 𝑐-axis of the
cp structure is subjected to compression, {101̄1} and {112̄2} twins
re activated, whereas under tension, {101̄2} and {112̄1} twins come
nto play [17,35–37]. Though twinning modes asymmetry has not
een explored in bcc structure, numerous bcc metals demonstrate a
winning–antitwinning asymmetry in terms of slip resistance. Shearing
he crystal in the twinning direction leads to the easier glide of dislo-
ations and the initiation of twin embryos. Conversely, when shearing
he crystal in the opposite (antitwinning) direction, significantly greater
esistance is encountered. [1,38,38–42]. The direct observation of twin-
ing in the antitwinning direction was not available until a very
ecent study. Wang et al. [41] employed in-situ transmission electron
icroscopy to investigate the deformation of nanoscale bcc tungsten.
his study revealed that the nucleation and growth of antitwinning
equire ultrahigh stresses, a condition made feasible by the nanoscale
eformation.

Temperature is another crucial parameter that can profoundly in-
luence the activation of various twinning modes. For instance, in hcp
irconium, it was found that the {101̄1} contraction twin occurred at
ower temperatures, the {112̄2} contraction twin was favored at higher
emperatures, while the {101̄2} tension twin was formed consistently
cross a wide range of temperatures [43,44]. Similarly, during the com-
ression of polycrystalline titanium, {112̄2} twins were present from
oom temperature up to 673 K, while the {101̄1} twin predominated at
emperatures above 673 K [45]. In bcc materials, the temperature effect
as mostly focused on the twinning-dislocation transition. Although

he influence of temperature on the activation of different twinning
odes in bcc structures remains relatively unexplored, it is reasonable

o expect similar temperature-dependent variations.
In this study, we aim to investigate the influence of mechanical

oading and temperature on twinning behavior in bcc materials. As
uch, we focused on two representative bcc materials: pure Fe and a bcc
i–Nb alloy. Fe is a widely used structural metal that exists in the bcc
tructure at ambient conditions. When exposed to elevated temperature
r high-pressure conditions, it undergoes transformations into fcc or
cp structures, respectively [46]. Metastable bcc Ti alloys have wide
pplications in various industries such as biomedical, automotive, and
erospace, due to their excellent biocompatibility, corrosion resistance,
nd fatigue strength. While pure Ti has an hcp structure at room
emperature, the addition of Nb stabilizes Ti–Nb alloys into the bcc
tructure [47]. When subjected to tension and compression along vari-
us directions, these bcc structures consistently form {112} twins, albeit
hrough distinct mechanisms that involve either hcp or fcc intermediate
hases. In order to investigate the mechanisms underlying twin forma-
ion, we conduct extensive analysis and theoretical calculations. This
omprehensive examination illuminates the pivotal factors influencing
winning behavior within bcc structures.

This paper is organized as follows. Section 2 describes the methods
or the MD simulations. Section 3 shows the MD simulations in single-
rystal Ti–Nb and polycrystal Fe, followed by the theoretical calculation
f variant selection and twinning modes for different {112} twins.
inally, conclusions are presented in Section 4.
2

. Methods

The MD simulations are performed using the LAMMPS package [48],
ith a time-step size of 1 fs. To avoid any artificial free surface effects,
eriodic boundary conditions are applied in all three dimensions.
nitially, the atoms are initialized with random velocities drawn from

Gaussian distribution, corresponding to an average temperature of
0 K. Subsequently, a relaxation of 100 ps is carried out at 10 K and
Pa utilizing the Nosé–Hoover thermostat [49] and the Parrinello–

ahman barostat [50] and within the isothermal–isobaric ensemble. To
nsure a clear visualization of the microstructure evolution [17,51] and
inimize thermal fluctuations, the deformation is simulated at a low

emperature of 10 K. The crystalline structures are identified using the
ommon neighbor analysis [52,53] in OVITO [54], where the bcc, hcp,
cc, and amorphous phases are denoted by the colors red, blue, green,
nd yellow, respectively. Extensive simulations are conducted across a
ange of strain rates, from 108 to 1010 s−1. It is observed that the key
winning behavior remains consistent regardless of the applied strain
ate.

This study investigates two systems: a single-crystal Ti-10 at.%Nb
nd a polycrystalline Fe. Metastable Ti alloys exhibit diverse twinning
odes ({112}, {332}, {5 8 11}, {10 9 3} twins) in room-temperature

xperiments [55,56]. Therefore, we selected the Ti–Nb alloy to investi-
ate and demonstrate tension–compression asymmetry in the twinning
rocess. Strain rates in MD simulations are much higher than those used
n experiments, so loading has a predominant effect on deformation
ompared to temperature, which is a secondary factor in most scenarios
f MD simulations. This does not pose a challenge to observe tempera-
ure asymmetry in Fe because it has a well-known high-temperature fcc
hase and a high-pressure low-temperature hcp phase. Additionally, the
ntentional choice of polycrystalline Fe over a single crystal aligns more
losely with realistic structures used in experiments and real-world
pplications. Considering all the factors discussed above, our research
tilizes Ti–Nb as the model system to illustrate loading asymmetry
nd Fe as the model system to explore temperature asymmetry. The
i–Nb single-crystal consists of one million atoms and has dimensions
f 29.5 × 25.5 × 24 nm3 along the [100], [011], and [01̄1] directions.
ithin the matrix of Ti atoms, the Nb atoms are randomly distributed

n substitutional positions. To model the interactions between Nb and
i atoms, the modified embedded-atom method potential developed
y Huang et al. [57] is employed. This potential has been specifically
esigned to accurately predict phase transformations and mechanical
roperties in TaHfNbTiZr high entropy alloys, thus making it suitable
or the Ti–Nb system.

The polycrystalline Fe has dimensions of 27.5 × 27.5 × 23.7 nm3 and
onsists of one million Fe atoms. The creation of the Fe polycrystal
nvolves utilizing a template from our previous study [34]. Subse-
uently, the polycrystal undergoes a full relaxation using the modified
mbedded-atom method potential developed by Etesami et al. [58].
he relaxation is carried out at 10 K and 0 Pa within the isothermal–

sobaric ensemble, employing the Nosé–Hoover thermostat [49] and
he Parrinello–Rahman barostat [50] for a duration of 100 ps. The
eformation is subsequently applied at strain rates of 109 and 1010 s−1,
nd under temperatures of 10 K and 800 K.

. Results

This section presents the effects of the loading direction and tem-
erature on the twinning behavior in both single-crystal and poly-
rystalline bcc structures. In the single-crystal bcc Ti–Nb alloy, MD
imulations are performed to study the influence of loading direction on
win formation. The choice of a single crystal facilitates a more straight-
orward theoretical analysis, enabling a comprehensive examination of
ariant selection, twinning modes, and twin–twin interactions. In the
olycrystalline bcc Fe, MD simulations are conducted to investigate the
emperature effect on twinning behavior.
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3.1. The effect of loading direction

3.1.1. Tension–compression asymmetry
To investigate the deformation of Ti–Nb single crystal, we conduct

MD simulations under six different loading conditions, including uni-
axial tension and compression along the 𝑥 ([100]), 𝑦 ([011]), or z ([01̄1])
axes. As shown in Fig. 1, tension–compression asymmetry is observed
in simulations across all the strain rates (108 to 1010 s−1) and for various
loading conditions. For instance, when subjected to [100] loading, the
single crystal demonstrates a yield strength of 13 GPa at approximately
13% strain during compression, whereas it yields at 8 GPa with an
8% strain level during tension (Fig. 1a). This yielding disparity is
attributed to the significantly higher resistance in the antitwinning
direction compared to the twinning direction [35,38–41]. Specifically,
the applied tension along [100] produces a shear stress in the twinning
sense, whereas the compression induces a shear in the antitwinning
sense. Due to Poisson’s effect, tension–compression asymmetry exhibits
an opposite trend under [011] loading when compared to [100] loading.
As depicted in Fig. 1b, the crystal yields earlier in compression than
in tension. Furthermore, this tension–compression asymmetry remains
consistent when loading along [011] or [01̄1] axes, as these directions
belong to the same crystallographic family.

It is found that the stress–strain curves and the underlying mi-
crostructure evolution are consistent for all strain rates. Therefore,
we will present our detailed analysis for the case with a strain rate
of 1010 s−1. This choice is further motivated by the prevalence of
deformation twins and the intriguing presence of intermediate phases
under a higher strain rate. Fig. 2 shows the microstructure evolution
under uniaxial compression along the [100] direction. The top row
presents the projection along [011] direction, while the bottom row
shows the projection along [01̄1] direction. As depicted in Fig. 2b, a
significant number of local bcc-hcp phase transformations occur when
the strain reaches 13.72%. When the strain is further increased to
14.60%, a few hcp regions undergo a transformation back to a new
bcc phase that exhibits a different orientation from the parent bcc
phase (Fig. 2c). At a strain of 18.00%, the majority of hcp regions
have transformed back into the bcc phase (Fig. 2d). Notably, the newly
formed bcc phase exhibits a misorientation angle of 70.53◦ degrees
around the [011] axis with respect to the parent bcc phase, resulting
in a {112} twin relationship.

The final microstructure exhibits the activation of multiple twin
variants. In Fig. 2h, two co-zone twin variants (bcc1 and bcc2) can
be observed in the projection along [01̄1]. Similarly, two other co-
zone twin variants (bcc3 and bcc4) are identified in the projection
along [011] (Fig. 2d). Due to different common zone axes, variants bcc1
and bcc2 are non-co-zone with variants bcc3 and bcc4. In Fig. 2e, we
provide a schematic representation of the four twin variants observed
in the MD simulation of [100]-compression.

The loading of [011] or [01̄1]-tension also results in a shear stress
in the antitwinning direction. We observe a consistent microstructure
evolution, and therefore, only present the case of [011]-tension for
illustration. Similar to the case of [100]-compression, the formation
of the intermediate hcp phase and {112} twins are observed in the
projection along [01̄1] (bottom row in Fig. 3). Interestingly, no twinning
is observed in the projection along [011] this time (top row in Fig. 3).
As schematically illustrated in Fig. 3e, two co-zone twin variants (bcc1
and bcc2) are formed, both of which possess a common zone axis along
[01̄1].

In contrast, the microstructure evolution under [100]-tension ex-
hibits a distinct pattern compared to that formed under compressive
loading. Notably, a fcc intermediate phase is formed under tension
(Fig. 4b), in contrast to the hcp intermediate phase formed under
compression (Fig. 2b). Specifically, numerous slender and elongated
{112} nuclei are observed at a strain of 10.00% (Fig. 4f). Thin layers
of fcc atoms are present within the twin nuclei and two equivalent
3

twin variants appear simultaneously. Upon reaching a strain of 12.00%,
Fig. 1. Stress–strain curves of single-crystal Ti–Nb under tensile (red) and compressive
(blue) loading, obtained from the MD simulations at 10 K and strain rates of 108 ∼ 1010

s−1. (a) Along [100] loading, compression exhibits a higher yield strength than tension.
Conversely, when loading along (b) [011] or (c) [01̄1] directions, tension demonstrates
a higher yield strength compared to compression. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

the fcc layers within the {112} twin nuclei transform into twin bcc
phases, completing the twin nucleation process (Fig. 4g). As deforma-
tion progresses, the twin boundaries propagate significantly and the
{112} twins continue to grow, leading to significant coherent twin
boundaries. Finally, at a strain of 22.00%, the merging of the two
{112} twin variants can be observed at numerous impinging twin tips
(Fig. 4h). Meanwhile, two additional {112} twin variants are initially
observed in the projection along [011] direction (Fig. 4b and c), which
subsequently undergo detwinning in some regions (Fig. 4d). As illus-
trated in Fig. 4e, four variants (bcc1, bcc2, bcc3, bcc4) are observed
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Fig. 2. Microstructure evolution in a Ti–Nb single crystal under [100]-compression at the strain rate of 1010 s−1 and the temperature of 10 K. The top row presents the microstructure
projected along [011] direction, while the bottom row shows the projection along [01̄1] direction. (a) The initial state features of the bcc single-crystal. (b) Nucleation of the hcp
phase occurs in various regions at a strain of 13.27%. (c) A few {112} twins form after the reverse hcp-bcc phase transformation. (d) Most hcp regions are eliminated as a result
of the reverse phase transformation at a strain of 18.00%. (f-h) The microstructure evolution in the projection along the [01̄1] direction exhibits a similar pattern. (e) A schematic
depicting the four twin variants. The bcc, hcp, fcc, and amorphous phases are depicted in colors red, blue, green, and yellow, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Microstructure evolution in the Ti–Nb single crystal under [011]-tension at the strain rate of 1010 s−1 and the temperature of 10 K. The top row presents the microstructure
projected along [011] direction, while the bottom row shows the projection along [01̄1] direction. (a) The initial state features of the bcc single-crystal. (b)–(d) No twinning happens
in the projection along [011]. (f) Nucleation of the hcp phase and formation of tiny {112} twins occurs in various regions at a strain of 22.80%. (g) More {112} twins form after
the reverse hcp-bcc phase transformation at the strain of 24.00%. (h) Most hcp regions are eliminated as a result of the reverse phase transformation at a strain of 26.00%. (e)
A schematic depicting the two twin variants. The bcc, hcp, fcc, and amorphous phases are depicted in red, blue, green, and yellow colors, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
in the case of [100]-axis tension. However, bcc3 and bcc4 grow less
compared to bcc1 and bcc2.

A compressive load in the [011] or [01̄1] directions also induces shear
stress in the twinning direction. In Fig. 5, we only present the mi-
crostructure evolution for the [011]-compression case, as both loading
scenarios exhibit a consistent evolution pattern. Similar to the [100]-
tension case, the formation of the intermediate fcc phase and {112}
twins are observed in the projection along [01̄1] (Fig. 5h). However, no
twinning is observed in the projection along [011] this time (Fig. 5d).
4

As schematically illustrated in Fig. 5e, two co-zone twin variants (bcc1
and bcc2) are formed, both of which possess a common zone axis along
[01̄1].

It should be noted that Poisson’s effect induces different trends
of tension–compression asymmetry depending on the loading axis.
Nevertheless, the presence of intermediate phases is characteristic of a
given deformation and offers an efficient way to differentiate between
different simulations. For example, for [100] loading, we will use the
terms ‘‘fcc case’’ or ‘‘hcp case’’ as shorthand to refer to [100]-tension
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Fig. 4. Microstructure evolution in Ti–Nb single crystal under [100]-tension at a strain rate of 1010 s−1 and a temperature of 10 K. The top row presents the microstructure
projected along [011] direction, while the bottom row shows the projection along [01̄1] direction. (a) The initial structure is a bcc single crystal. (f) {112} twin nuclei begin to
form, accompanied by the presence of fcc atomic layers within. (g) Twins are formed completely when the fcc atoms inside the twin nuclei transform back to the bcc phase.
(h) The rapid propagation and growth of two {112} twin variants. (b-c) Similar microstructure evolution is initially observed in the projection along [011] direction, with some
local detwinning occurring at a strain of 22.00% in (d). (e) A schematic depicting the two twin variants. The red, blue, green, and yellow colors represent the bcc, hcp, fcc, and
amorphous phases, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Microstructure evolution in Ti–Nb single crystal under [011]-compression at a strain rate of 1010 s−1 and a temperature of 10 K. The top row presents the microstructure
projected along [011] direction, while the bottom row shows the projection along [01̄1] direction. (a) The initial structure is a bcc single crystal. (f) {112} twin nuclei begin to
form at the strain of 11.20%, accompanied by the presence of fcc atomic layers within. (g) Twins are formed completely when the fcc atoms inside the twin nuclei transform
back to the bcc phase at the strain of 12.00%. (h) The rapid propagation and growth of two {112} twin variants at the strain of 18.00%. (b-d) No twinning is observed in the
projection along [011]. (e) A schematic depicting the four twin variants. The red, blue, green, and yellow colors represent the bcc, hcp, fcc, and amorphous phases, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
or compression, respectively. Similarly, for [011] or [01̄1] loading, ‘‘fcc
case’’ or ‘‘hcp case’’ are shorthand to denote compression or tension,
respectively.

It is crucial to note that the deformation twinning observed in our
simulations follows a two-step process: a bcc-to-intermediate phase
transition followed by an intermediate-to-twin bcc phase transition.
Such transformation-assisted twinning processes have been reported
for both pure bcc metals and metastable Ti alloys [11,23–27]. No-
tably, twin nucleation commences from multiple locations without any
preceding defects, such as dislocations or free surfaces. Therefore, we
assert that this process is homogeneous twin nucleation, largely due
5

to the elevated strain rate inherent in MD simulations and the single
crystal used in our work.

The nucleation, growth, and twin–twin interactions significantly in-
fluence the overall stress–strain response, which is thoroughly demon-
strated in Fig. S1 of the supplementary materials. The yield point aligns
with the initial activation of multiple local bcc-hcp or bcc-fcc phase
transformations, i.e., the first step of the observed twinning process.
Substantial stress drops are notable as the phase transformation pro-
gresses, ceasing upon the reverse transformation back to the twin bcc
phase and the complete nucleation of twins. This behavior occurs in
both twinning and antitwinning loading directions.
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Following twin nucleation, the fcc case exhibits notable twin merg-
ing and fast twin growth, leading to a substantial additional stress drop.
The twin growth is mediated by the nucleation and propagation of
twinning dislocations along the coherent twin boundary. Eventually,
the entire single crystal becomes nearly fully twinned, which is evident
in the stress–strain curve, displaying an exceptionally low flow stress.
Conversely, the hcp case exhibits significantly higher flow stress due to
limited twin growth.

Again, we emphasize that the twinning process observed in our
simulations shares fundamental similarities with the transformation-
assisted twinning processes reported in the literature [23–26,30]. It is
crucial to recognize the significant influence of the material system on
the phase stability of the metastable intermediate phases. This variation
in phase stability can result in twinning following distinct deformation
paths, exemplified by the bcc-hcp-bcc twinning path in our work, as
opposed to the bcc-𝜔-bcc twinning path in [27,30].

3.1.2. Variant selection
Interestingly, four twin variants are observed in loading along [100],

while only two variants are observed in loading along [011] or [01̄1]. We
will conduct theoretical calculations to quantitatively investigate the
twin variant selection. The correspondence matrix 𝐶𝑖𝑗 is used to char-
acterize the twinning deformation in the parent bcc lattice basis relative
to the twin bcc lattice basis [35,59]. This matrix can be obtained from
the components of a tensor 𝐂, in standard basis. It departs from the
actual distortion by a rotation (change of basis), where the distortion
is the deformation gradient of the lattice’s displacive transformation.
Generally, the distortion does not involve a significant rigid-body ro-
tation, allowing it to be approximated by a stretch tensor through its
polar decomposition. In this case, such stretch tensor coincides with the
symmetric positive definite right stretch tensor 𝐔 =

√

𝐂⊤ ⋅ 𝐂, obtained
from the polar decomposition of 𝐂. The stretch tensor 𝐔 is crucial for
determining the favored twin variants under an applied load, and later
on for solving the twinning equation to obtain the complete twinning
components.

By denoting 𝐆𝑖 and 𝐠𝑖 as the parent and twin lattice bases, respec-
tively, we can express 𝐂 = 𝐠𝑖 ⊗𝐆𝑖, where 𝐆𝑖 represents the reciprocal
parent basis satisfying 𝐆𝑖⋅𝐆𝑗 = 𝛿𝑗𝑖 . These bases can be identified directly
from the MD simulations. We will begin with the hcp case, where the
twin variants remain stable and detwinning is not observed. From the
MD simulations in Fig. 2, three orthogonal directions are tracked during
the entire twinning process, as shown in Fig. 6. This monitoring yields
one set of orientation relations, expressed as follows:

[100]𝑏𝑐𝑐 ↔
1
3
[1̄1̄20]ℎ𝑐𝑝 ↔

1
2
[11̄1̄]𝑏𝑐𝑐1

[011]𝑏𝑐𝑐 ↔ [11̄00]ℎ𝑐𝑝 ↔
1
2
[311]𝑏𝑐𝑐1

[01̄1]𝑏𝑐𝑐 ↔ [0001]ℎ𝑐𝑝 ↔ [01̄1]𝑏𝑐𝑐1 .

(1)

Based on this lattice correspondence, we define the parent basis as
𝐆1 = 𝑎0 𝐞1, 𝐆2 = 𝑎0 (𝐞2 + 𝐞3) and 𝐆3 = 𝑎0 (−𝐞2 + 𝐞3), while the twin basis
as 𝐠1 = (𝑎0∕2) (𝐞1−𝐞2−𝐞3), 𝐠2 = (𝑎0∕2) (3𝐞1+𝐞2+𝐞3) and 𝐠3 = 𝑎0 (−𝐞2+𝐞3).
The correspondence matrix 𝐶𝑖𝑗 calculated from these bases is

𝐶𝑖𝑗 |𝑏𝑐𝑐−ℎ𝑐𝑝−𝑏𝑐𝑐1 =
⎡

⎢

⎢

⎣

0.5 0.75 0.75
−0.5 0.75 −0.25
−0.5 −0.25 0.75

⎤

⎥

⎥

⎦

. (2)

Besides the variant bcc1 associated with the pathway in Eq. (2), its
co-zone variant bcc2 has the correspondence matrix of

𝐶𝑖𝑗 |𝑏𝑐𝑐−ℎ𝑐𝑝−𝑏𝑐𝑐2 =
⎡

⎢

⎢

0.5 −0.75 −0.75
0.5 0.75 −0.25

⎤

⎥

⎥

. (3)
6

⎣ 0.5 −0.25 0.75 ⎦
Fig. 6. Identification of lattice correspondence in the hcp case. (a) Two orthogonal
directions are traced in the parent phase, with the purple and cyan atoms representing
the [100]𝑏𝑐𝑐 and [011]𝑏𝑐𝑐 directions. (b) Following the bcc-hcp phase transformation,
the two traced directions transformation into 1

3
[1̄1̄20]ℎ𝑐𝑝 and [11̄00]ℎ𝑐𝑝. (c) With the

hcp-bcc transformation completing the twin formation process, the traced directions
inside the twin evolve into 1

2
[11̄1̄]𝑏𝑐𝑐1 and 1

2
[311]𝑏𝑐𝑐1, respectively. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1
Biot strain component along three different crystalline directions for each of the twelve
variants formed under the bcc-hcp-bcc path.

Variant Biot strain

[100]-direction [011]-direction [01̄1]-direction

bcc1 −0.1384 +0.3387 0
bcc2 −0.1384 +0.3387 0
bcc3 −0.1384 0 +0.3387
bcc4 −0.1384 0 +0.3387
bcc5 +0.0847 +0.0694 −0.1768
bcc6 +0.0847 −0.1768 +0.0694
bcc7 +0.0847 −0.1768 +0.0694
bcc8 +0.0847 +0.0694 −0.1768
bcc9 +0.0847 +0.0694 −0.1768
bcc10 +0.0847 −0.1768 +0.0694
bcc11 +0.0847 +0.0694 −0.1768
bcc12 +0.0847 −0.1768 +0.0694

For the twin variants bcc3 and bcc4, correspondence matrices read

𝐶𝑖𝑗 |𝑏𝑐𝑐−ℎ𝑐𝑝−𝑏𝑐𝑐3 =
⎡

⎢

⎢

⎣

0.5 −0.75 0.75
0.5 0.75 0.25
−0.5 0.25 0.75

⎤

⎥

⎥

⎦

,

𝐶𝑖𝑗 |𝑏𝑐𝑐−ℎ𝑐𝑝−𝑏𝑐𝑐4 =
⎡

⎢

⎢

⎣

0.5 0.75 −0.75
−0.5 0.75 0.25
0.5 0.25 0.75

⎤

⎥

⎥

⎦

.

(4)

It should be noted that the system can undergo twelve crystallo-
graphically equivalent bcc-hcp-bcc pathways based on the Burgers
mechanism [20,60], in addition to the identity pathway [20]. However,
the presence of a mechanical load introduces asymmetry to them,
causing certain pathways to be favored over others. For an applied load
along a specific direction (𝐝), we determine the favored deformation
path based on the Biot strain component 𝑒𝑑 = (𝐄Biot ⋅ 𝐝) ⋅ 𝐝, where the
Biot strain tensor is related to the stretch tensor through 𝐄Biot = 𝐔−𝐈. If
𝑒𝑑 is greater than zero, the deformation path is favored under tension,
whereas if 𝑒𝑑 is smaller than zero, it is favored under compression.

As shown in Table 1, for [100]-compression, we find a favorable
negative Biot strain 𝑒𝑑 = (𝐄Biot ⋅ 𝐝) ⋅ 𝐝 = −0.1384 for bcc1, bcc2, bcc3,
and bcc4, with deformation pathways given in Eqs. (2), (3), and (4). On
the other hand, the other eight non-identity pathways present a positive
Biot strain and, therefore, are not favored by the compressive load.

As for [011]-tension, we find a favorable positive Biot strain 𝑒𝑑 =
(𝐄Biot ⋅𝐝)⋅𝐝 = +0.3387 for bcc1 and bcc2 with the deformation pathways
represented by Eqs. (2) and (3). Four other variants also display a
positive 𝑒𝑑 , but the value is significantly smaller (+0.0694) than that for
bcc1 and bcc2. Hence, the microstructure is expected to be populated
by bcc1 and bcc2 under [011]-tension.

As for [01̄1]-tension, we find a favorable positive Biot strain 𝑒𝑑 =
(𝐄Biot ⋅ 𝐝) ⋅ 𝐝 = +0.3387 for bcc3 and bcc4 with the deformation
pathways represented by Eq. (4), besides four other variants presenting
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Fig. 7. The {112} twin–twin interactions in Ti–Nb single-crystal during (a) compression
and (b) tension along the [100]-axis. The red unit cell represents the parent bcc, whereas
the purple and pink unit cells correspond to two twin variants bcc1 and bcc2. The
arrows indicate the loading directions. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

a significantly smaller 𝑒𝑑 value (+0.0694). Using the same argument as
in the previous case, the microstructure should be populated by bcc3
and bcc4 under [01̄1]-tension.

Similarly, the Biot strain analysis for the fcc cases also agrees
with the variant selection observed in the MD simulations. As such,
our theoretical calculations validate the variant selection in the MD
simulations, confirming the number of variants and the specific variant
to activate under the mechanical load. In other words, the twin variant
selection here in single crystal Ti–Nb alloy is found to obey the Schmid
law. Similarly, Bertrand et al. [61] confirmed that the activated variant
has the highest Schmid factor in bcc Ti alloys. However, Min et al. [62]
observed non-Schmid behavior for some primary and secondary twins
in polycrystalline Ti-Mo-Zr alloys, which might be attributed to local
stress variations in the polycrystals.

3.1.3. Twin–twin interactions
Among all the cases, detwinning is only observed in the case of

[100]-tension. Our analysis reveals that the local detwinning is at-
tributed to the unique twin–twin interactions. As different twin bound-
aries grow and approach each other, their interactions frequently result
in the creation of intricate twin–twin boundaries, which show habit
planes distinct from those of the original twins. For example, the
interaction of two non-co-zone {101̄2} twin leads to the formation of
a {112̄2} twin–twin boundary [51,63]. These twin–twin boundaries
exist in such large quantities that they can even contribute to the
emergence of a local misorientation peak in the electron backscatter
diffraction misorientation histogram for both pure magnesium and its
alloys [36,64].

In this work, we observe twin–twin interactions in both compressive
and tensile loading, as shown in Fig. 7. Under [100]-compression (hcp
case), two {112} twin variants form a twin relation characterized by
a misorientation of 51.1◦ degrees across ⟨11̄0⟩ (Fig. 7a). In contrast,
during [100]-tension (fcc case), we observe the merging of the two twin
variants and the formation of a single bcc variant (Fig. 7b). It is worth
noting that the twin variants in both cases (the purple and pink bcc
unit cells in Figs. 7 a and b) share the same orientation relative to
the parent bcc structure. Surprisingly, they exhibit distinctly different
twin–twin interactions. As such, we will solve the twining equation to
quantitatively investigate the twin–twin interactions.

The twinning equation is a kinematic compatibility condition that
appears from the jump in the deformation gradient across a twin, whose
solution has been discussed by Ball and James [65]. If a twin is formed
between variants 𝐼 and 𝐽 , with right stretch tensors 𝐔𝐼 and 𝐔𝐽 , then
the twinning equation takes the form

𝐐 ⋅ 𝐔𝐼 − 𝐔𝐽 = 𝐚⊗ 𝐧, (5)

for some vector 𝐚 and a unit normal 𝐧 to the habit plane. The rota-
tion tensor 𝐐 contains information about the misorientation between
7

Fig. 8. Identification of lattice correspondence in the fcc case. (a) Two orthogonal
directions are traced in the parent phase, with the purple and cyan atoms representing
the [100]𝑏𝑐𝑐 and [011]𝑏𝑐𝑐 directions. (b) When the twin nucleus forms and exhibits the
fcc structure, the two traced directions transform into [100]𝑓𝑐𝑐 and [010]𝑓𝑐𝑐 . (c) Upon
the completion of twin formation, the traced directions inside the twin become [011]𝑏𝑐𝑐1
and [1̄00]𝑏𝑐𝑐1, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the neighboring lattices. The procedure for calculating the twinning
elements is detailed by Bhattacharya [66].

The direction of shear 𝜼, habit plane 𝐊 and shear magnitude 𝑠 can
be calculated from the elements of (5) by

𝜼 = 𝐚
|𝐚|

, 𝐊 =
𝐔−1
𝐽 ⋅ 𝐧

|𝐔−1
𝐽 ⋅ 𝐧|

, 𝑠 = |𝐚| |𝐔−1
𝐽 ⋅ 𝐧| . (6)

When one of the variants is the reference lattice, say variant 𝐽 , then
𝐔𝐽 = 𝐈, which allows us to combine Eqs. (5) and (6) as follows

𝐐 ⋅ 𝐔𝐼 − 𝐈 = 𝑠(𝜼⊗𝐊) . (7)

Since the resulting deformation gradient for the twin bcc depends on
the path the original bcc lattice undergoes, i.e., fcc or hcp-related
path, so do the twinning elements from Eq. (7). We will start with
the hcp case, for which the lattice correspondence has been derived
in Eqs. (2), (3), and (4). For twin-twin interactions between bcc1
and bcc2, the stretch 𝐔𝐼 is calculated from the total correspondence
𝐂𝑏𝑐𝑐−ℎ𝑐𝑝−𝑏𝑐𝑐1 ⋅𝐂−1

𝑏𝑐𝑐−ℎ𝑐𝑝−𝑏𝑐𝑐2. Based on this stretch, from Eq. (7) we obtain

𝐊1 = (2̄3̄3̄) , 𝜼1 = [31̄1̄] , 𝑠1 = 0.3536 ,

𝐊2 = (2̄11) , 𝜼2 = [111] , 𝑠2 = 0.3536 .
(8)

Indeed, the {332} twin is characterized by a misorientation of 51.1◦

degrees across ⟨11̄0⟩, consistent with the observation in the twin–twin
interaction in Fig. 7a.

Next, we will examine the remarkable twin–twin interaction in the
fcc case, where the two distinct twin variants coalesce into a single bcc
phase. From the MD simulations in Fig. 4, we monitor the evolution
of three orthogonal directions throughout the twin formation process,
as visualized in Fig. 8. This tracking leads us to derive a specific set of
orientation relations for bcc1, expressed as follows:

[100]𝑏𝑐𝑐 ↔ [100]𝑓𝑐𝑐 ↔ [011]𝑏𝑐𝑐1
[011]𝑏𝑐𝑐 ↔ [010]𝑓𝑐𝑐 ↔ [1̄00]𝑏𝑐𝑐1
[01̄1]𝑏𝑐𝑐 ↔ [001]𝑓𝑐𝑐 ↔ [01̄1]𝑏𝑐𝑐1 .

(9)

Accordingly, we define the parent basis as 𝐆1 = 𝑎0 𝐞1, 𝐆2 = 𝑎0 (𝐞2 +
𝐞3), and 𝐆3 = 𝑎0 (−𝐞2 + 𝐞3), while the twin basis as 𝐠1 = 𝑎0 (𝐞2 + 𝐞3),
𝐠2 = −𝑎0 𝐞1, and 𝐠3 = 𝑎0 (−𝐞2 + 𝐞3). Hence, the correspondence matrix
𝐶𝑖𝑗 for this deformation is

𝐶𝑖𝑗 |𝑏𝑐𝑐−𝑓𝑐𝑐−𝑏𝑐𝑐1 =
⎡

⎢

⎢

⎣

0 −0.5 −0.5
1 0.5 −0.5
1 −0.5 0.5

⎤

⎥

⎥

⎦

. (10)

For bcc2, the lattice correspondence is found to be

[100]𝑏𝑐𝑐 ↔ [100]𝑓𝑐𝑐 ↔ [011̄]𝑏𝑐𝑐2
[011]𝑏𝑐𝑐 ↔ [010]𝑓𝑐𝑐 ↔ [1̄00]𝑏𝑐𝑐2
̄

(11)

[011]𝑏𝑐𝑐 ↔ [001]𝑓𝑐𝑐 ↔ [011]𝑏𝑐𝑐2 ,
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Fig. 9. The contour plot displays the strain component 𝜖𝑦𝑦 for (a) the hcp case at a
stain of 14.6% and (b) the fcc case at a strain of 15.48%. The red color inside the
twins in the hcp case indicates a positive 𝜖𝑦𝑦, while the blue color inside the twins in
the fcc case signifies a negative 𝜖𝑦𝑦. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

leading to a correspondence matrix

𝐶𝑖𝑗 |𝑏𝑐𝑐−𝑓𝑐𝑐−𝑏𝑐𝑐2 =
⎡

⎢

⎢

⎣

0 −0.5 −0.5
1 −0.5 0.5
1 −0.5 0.5

⎤

⎥

⎥

⎦

. (12)

When solving the twinning equation for the twin–twin boundary in the
fcc case, we are surprised to discover that the stretch 𝐔 is identical for
both bcc1 (Eq. (10)) and bcc2 (Eq. (12)), so that no solution is found
from the twinning equation. In essence, the two co-zone twin variants
merge because they have identical stretch 𝐔, preventing the formation
of a twin–twin boundary upon their intersection.

In the fcc case, merging bcc1 and bcc2 expedites the rapid growth
of these two variants, leading to a substantial portion of merged twins.
However, it is crucial to acknowledge that this merging process necessi-
tates the concurrent rotation of bcc1 and bcc2, resulting in pronounced
long-range elastic stress. Such high local stress concentration is clearly
shown in Fig. S2(a). The earlier merging of bcc1 and bcc2 generates
elastic stress that, in turn, hampers the subsequent growth and merg-
ing of bcc3 and bcc4. This phenomenon is manifested as localized
detwinning of bcc3 and bcc4 in certain regions in Fig. 4d.

3.1.4. Twin mode
While all the twins share the same {112} habit, they involve dif-

ferent intermediate phases and exhibit distinct twin–twin interactions.
These disparities necessitate a closer examination of the twinning mode
and deformation path for these primary {112} twins. As such, we com-
pare the strain contours for the two cases in Fig. 9. The most prominent
observation is the opposing strain component within the twins: the
hcp case shows a positive strain component (red in Fig. 9a), while fcc
case shows a negative strain component (blue in Fig. 9b). Given that
the reference for the strain component is the same – the parent bcc
structure – the opposing strain components signify opposite twinning
shears between the hcp and fcc cases. Additionally, the magnitude
of the strain in the hcp case is one-half of that in the fcc case, as
indicated by the color bars in Fig. 9. In other words, the strain contour
clearly reveals the distinction between these {112} twins, including
their opposing shear directions and different shear magnitudes.

The distinctions observed in the two cases call for additional theo-
retical calculations to precisely identify the specific twinning modes.
Specifically, the stretch tensor components 𝑈𝑖𝑗 calculated from the
correspondence matrices will be used to determine the exact twinning
mode. For the fcc case, based on the correspondence matrix in Eq. (10),
we find the following twinning elements

𝐊1 = (211) , 𝜼1 = [11̄1̄] , 𝑠1 = 0.7071 ,

𝐊2 = (2̄11) , 𝜼2 = [1̄1̄1̄] , 𝑠2 = 0.7071 .
(13)

It should be noted that for each twin variant, the twinning equa-
tion will offer different solutions, even if just a permutation of the
8

Table 2
The summary of the twinning modes observed in each loading condition, along with
the corresponding twin–twin interactions.

Loading directions [100]-compression [100]-tension
[011]-tension [011]-compression
[01̄1]-tension [01̄1]-compression

intermediate phase hcp fcc
𝐾1 plane {211} {211}
𝐾2 plane {2̄33} {2̄11}
𝜂1 direction ⟨1̄11⟩ ⟨11̄1̄⟩
shear 𝑠 0.3536 0.7071
twin–twin interaction {332}⟨113̄⟩ twin twin merging

same twinning mode. For example, the twinning solutions for the twin
variant with the correspondence matrix in Eq. (12) present planes and
directions belonging to the same family of Eq. (13),

𝐊1 = (211̄) , 𝜼1 = [11̄1] , 𝑠1 = 0.7071 ,

𝐊2 = (2̄11̄) , 𝜼2 = [1̄1̄1] , 𝑠2 = 0.7071 .
(14)

Similarly, based on the correspondence matrix in Eq. (2), we find
the following twinning elements for the hcp case

𝐊1 = (2̄1̄1̄) , 𝜼1 = [11̄1̄] , 𝑠1 = 0.3536 ,

𝐊2 = (2̄33) , 𝜼2 = [311] , 𝑠2 = 0.3536 .
(15)

As summarized in Table 2, twin variants formed through different
intermediate phases and, consequently, different deformation paths,
exhibit distinct twinning elements. In the fcc case, variant bcc1 has
a (211) habit and a shear in [11̄1̄] direction with a magnitude of
0.7071 (

√

2∕2). Conversely, in the hcp case, variant bcc1 maintains
the same (211) habit, but an opposite shear in [1̄11] direction with
a magnitude of 0.3536 (

√

2∕4). In other words, the twinning mode
calculation confirms the observation from the MD simulations, showing
that the hcp case has an opposite twinning shear direction and half the
shear magnitude compared to the fcc case.

Furthermore, based on the twinning elements identified in the equa-
tions above, we can readily identify the atomic movements associated
with the twin modes within the dichromatic complex. Fig. 10a depicts
the {112} twin mode in the fcc case, where all atoms are sheared
into their correction positions without undergoing atomic shuffle. It is
correlated to the fact that the Bain path for bcc-fcc transformation is
a uniform lattice distortion without atomic shuffle. Hence, this twin-
ning mode represents the normal ‘‘no shuffle’’ twin mode observed in
numerous bcc structures, including Fe, molybdenum, and tungsten [20,
35].

Contrarily, the {112} twin mode in the hcp case entails both shear
and shuffle, as depicted in Fig. 10b. It is again correlated to the fact
that the Burgers path for bcc-hcp transformation requires both lattice
shear and atomic shuffle. Therefore, this twinning mode corresponds
to the ‘‘1/2 atoms shuffle’’ mode, which is the reciprocal of the {332}
twin mode (Fig. 10c) widely observed in metastable titanium alloys [9,
10,67]. From a mathematical perspective, the twinning equation in
Eq. (7) has a pair of interchangeable solutions, corresponding to the
reciprocal twin pairs of ‘‘1/2 atoms shuffle’’ {112} twin mode and the
{332} twin mode. They exhibit identical twinning shear magnitude but
interchanged 𝐾1 and 𝐾2 planes, as well as 𝜂1 and 𝜂2 directions, as
evident in their twinning elements in Eqs. (8) and (15).

Moreover, the different twin–twin interactions can also be inter-
preted by the atomic movements within the twinning modes. Specif-
ically, when different twin variants approach each other, they generate
strong elastic interactions that exert substantial local stress. Since the
twinning in the fcc case only involves simple shear, the elastic inter-
action can rotate the twin variants to perfect alignment, resulting in
the merging of the impinging twins. In contrast, the twinning in the
hcp phase requires both shear and shuffle. Here, the elastic interaction
cannot accommodate the ‘‘random’’ atomic shuffle, leading to a prob-
lematic state for twin merging. Consequently, a new {332} twin–twin
boundary is formed between the impinging twin variants.
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Fig. 10. The dichromatic complexes of (a) ‘‘no shuffle’’ {112} twin, (b) ‘‘1/2 atoms shuffle’’ {112} twin, and (c) {332} twins, projected along the ⟨11̄0⟩ direction. The parent bcc
is represented by the bottom gray and top open symbols, while the twin bcc is represented by the top gray symbols. The shear direction 𝜂1 and atomic shuffle are shown by red
and blue arrows, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. (a) The initial polycrystal Fe is subject to a [100]-compression at the strain rate
of 1010 s−1 and a temperature of 10 K. (b) A slice of the polycrystal showing a grain
in the initial bcc phase. (c) and (d) The nucleation and growth of the intermediate hcp
phase. The reverse hcp to bcc phase transformation is initiated in (e) and completed
in (f), leading to the formation of {112} twins.

3.2. The effect of temperature

The phenomenon of tension–compression asymmetry and the var-
ious twinning modes are evident in single crystals. However, inves-
tigating the impact of loading direction on polycrystalline structures
is intriguing due to the presence of more complex stress and strain
conditions. In such cases, additional parameters may play a more
pivotal role, such as temperature which is known to introduce twinning
asymmetry in hcp materials. Inspired by the hcp and fcc cases observed
in Ti alloy, we have chosen Fe as our material of interest for polycrystal.
Fe exhibits an hcp structure at low temperatures and transforms to an
fcc structure at higher temperatures. Consequently, we will conduct MD
simulations to explore deformation in a polycrystalline Fe structure at
two significantly different temperatures of 10 K and 800 K.

A meticulous examination and comparison of the microstructure
evolution in the two cases allow us to deduce that the {112} twin
is formed through an intermediate hcp phase at lower temperatures
while involving fcc phases at elevated temperatures. Specifically, in one
large grain of Fe polycrystal, we observe the formation of {112} twins
through the bcc-hcp-bcc pathway at 10 K (Fig. 11b-f). In contrast, thin
layers of fcc atoms are observed during the twin formation in the same
grain when the temperature is raised to 800 K (Fig. 12).

It is noted that the random grain orientation of the polycrystal
makes it challenging to directly calculate the deformation gradient
as in the single crystal case in Section 3.1.2. However, MD simu-
lations offer real-time microstructure evolution, enabling us to iden-
tify the conjugate twinning planes and associated twinning modes.
Fig. 13 presents the analysis employed to determine the 𝐾 planes for
9

2

the low-temperature case (Fig. 13a-b) and the high-temperature case
(Fig. 13c-d).

In Fig. 13a, we trace a {2̄33} plane in the parent phase, which is
found to transform into a {233} plane after twinning in Fig. 13b. Thus,
the 𝐾2 conjugate twin plane for the {112} twin is determined to be the
{233} plane. Based on the theoretical calculation in Section 3.1.4, at
low temperatures, the {112} twinning mode is the 1/2 atoms shuffle
mode, achieved through the hcp intermediate phase with a smaller
shear amount of 0.3536.

In Fig. 13c, we trace a {2̄11} plane in the parent phase, which
transforms into another {211} plane after twinning in Fig. 13d. Con-
sequently, at high temperatures, the {112} twinning mode is the no-
shuffle mode with a twinning shear amount of 0.7071. As such, the
observation in the MD simulations of polycrystalline Fe underscores
the significant influence of temperature in altering the twinning mode
of the {112} twins. In previous studies, the temperature effect on the
deformation in bcc metals and alloys mostly focused on the competition
between dislocation slip and deformation twinning. Specifically, with
increasing temperature the Peierls barrier for dislocations decreases
faster than twinning, leading to the activation of dislocation and the
suppression of twinning. Facilitated by the high strain rate in MD
simulations, twinning occurs exclusively in the polycrystalline Fe in this
work. Such twinning abundancy allows us to expand the understanding
of temperature effect to the competition between different twinning
modes in bcc materials.

4. Conclusions

As summarized in Fig. 14, our MD simulations provide valuable
insights into the mechanisms that govern the activation of diverse twin
modes in bcc materials under distinct loading directions and temper-
atures. In Ti–Nb single crystal, a tension–compression asymmetry in
twinning behavior is observed across all six loading directions. For
instance, when loading along [100], the {112} twin forms through
the bcc-hcp-bcc phase transformation under compression. Conversely,
under tension, fcc atomic layers are observed within the twin nuclei.
Similarly, our MD simulations of Fe polycrystals reveal the temperature
effect on the activation of distinct twin modes. At a low temperature
of 10 K, the {112} twin forms via the bcc-hcp-bcc pathway, while in-
creasing the temperature to 800 K leads to the twin formation through
the bcc-fcc-bcc pathway.

Though all twins share the same {112} habit plane, the strain
contour clearly demonstrates that twins in the two cases have opposing
shear directions and different shear magnitudes. The lattice correspon-
dence captured in our MD simulations enables us to determine the
complete twinning components. In the fcc case, the twin involves only
a shear—in [11̄1̄] direction with a magnitude of

√

2∕2—and represents
the normal ‘‘no shuffle’’ twin mode observed in numerous bcc struc-
tures. In contrast, in the hcp case, the twin involves an opposite shear
in [1̄11] direction with a magnitude of

√

2∕4. Notably, this corresponds
to the 1/2 atoms shuffle mode, where only half of the atoms are sheared
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Fig. 12. Microstructure evolution in the same grain of the Fe polycrystal under [100]-compression at the strain rate of 1010 s−1 and a temperature of 800 K. (a-c) With increasing
strain, the initial bcc structure begins to form {112} twin nuclei, within which the presence of fcc atoms is evident. (d) and (e) The fcc-bcc reverse phase transformation assists
the complete nucleation of {112} twins. (f) The {112} twins continue to grow further.
Fig. 13. The identification of the conjugate twin plane for the polycrystalline Fe during
x-compression. A black plane is tracked during the deformation process to observe its
transformation after twinning. The 𝐾2 plane is found to be {233} at 10 K (a-b), while
turns into {211} at 800 K (c-d). The microstructure evolution is projected along the
⟨11̄0⟩ direction.

into the correct position, while the other half requires additional atomic
shuffle. These intricacies in the twinning modes have significant im-
plications for the twin–twin interactions. The no-shuffle mode in the
fcc case facilitates the elastic distortion to align different twin variants,
resulting in the merging of twins. However, the shuffle in the hcp case
creates a challenging scenario for twin merging, ultimately resulting in
the formation of a twin–twin boundary with a {332} habit.

Furthermore, we calculate the deformation gradient and correspon-
dence matrix to investigate the variant selection observed in our MD
simulations. The theoretical calculations validate the variant selection
10
within the MD simulations, confirming not only the number of variants
but also the specific variant activated under the mechanical load.
These results underscore the pivotal role played by mechanical loading
and temperature in the activation of specific twin modes. This insight
opens up new opportunities for engineering microstructures through
meticulously designed thermomechanical processing techniques [68].

In this work, we focus on unraveling the mechanisms governing
loading orientation or temperature-induced twinning mode asymme-
try. However, it is worth emphasizing that factors such as loading,
temperature, and grain boundaries all directly influence the energy
barrier and the minimal energy path for various twinning modes, which
ultimately affect twinning modes and variant selection. However, we
acknowledge that MD is not the single optimal tool for investigating
the coupling and interactions of multiple factors, especially compared
to mesoscale approaches such as phase field or crystal plasticity. For
example, a comprehensive analysis of the effect of grain boundaries on
twinning necessitates the inclusion of many grains in the simulation.
This, however, results in substantial, if not formidable, computation
costs for MD simulations, which are typically limited to a few mil-
lion atoms on a regular-sized computing cluster. In contrast, crystal
plasticity simulations have the potential to effectively demonstrate the
collective influence of grain size and grain misorientation on twin
nucleation. Nevertheless, the distinctive advantage of MD simulations
lies in their ability to present a well-contained system that isolates a
single factor for a rigorous analysis of its impact on twinning behaviors.
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Fig. 14. A schematic diagram of the microstructural evolution in bcc structure under different loading or temperature conditions. Left: the case with hcp intermediate phase occurs
under [100]-compression or ⟨011⟩-tension or low temperature; Right: the case with fcc intermediate phase occurs under [100]-tension or ⟨011⟩-compression or high temperature.
The bcc, hcp, and fcc atoms are depicted in red, blue, and green colors, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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